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This article describes a proposed inventory and procurement policy for
optimal procedures for ordering and allocating for the Network Supply Depot
(NSD). The policy defined differs from conventional inventory stockage and
resupply systems in that it takes into consideration the inventory status not only
at NSD but also at each of the Complex Supply Facilities.

I. Basic Features of the Proposed Policy

For each item the Network Supply Depot (NSD) sup-
plies to the Complex Supply Facilities (CSFs), there are
three fundamental questions that the policy must answer:

(1) When should NSD reorder the items?
(2) How much should be ordered?

(3) How should the NSD supply be allocated among
the CSFs?

(1) Any policy, such as the present system, in which
NSD reorders whenever its own inventory reaches a
prescribed minimum is wasteful, incurring excessive
inventory costs. This is because NSD’s inventory may
reach its minimum at a time when the levels of inven-
tory on hand at the CSFs are large. An efficient cost-
minimizing policy must base reorder decisions upon the
state of the entire system, ie. the levels of inventory
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on hand at the CSFs (continuously monitored by the
Integrated Logistics System) as well as the NSD level.
The proposed policy establishes a safe minimum inven-
tory level for each CSF and requires NSD to reorder
whenever one or more CSFs reach the prescribed
minimum.

(2) The conventional economic lot size model (Refs.
1 and 2) has been modified to take into account the
effects of ordering simultaneously for all CSFs. An equa-
tion is set up which expresses for each item the average
cost per year incurred in operating the inventory system.
The optimal mean time between orders can be calcu-
lated, and from this the order size is determined, using
estimated mean demand levels for the CSFs.

(3) A mathematical analysis based upon the average

cost equation reveals that optimality is achieved by
distributing the NSD supply to the CSFs in such a way
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as to minimize the average total inventory in the system
at reorder time. Since each CSF has at least its pre-
scribed minimum inventory level, this amounts to mini-
mizing on the average the sum of the “excess” inventories
(over minimum levels) of the CSFs. The “ideal” situation
is one where all the CSFs reach minimum at the same
time. However, this ideal is seldom attained because the
model assumes the CSF inventories are depleted by
orders arriving at random. The next section deals with
minimization of excess inventories.

Il. Allocation of NSD Supply Among CSFs

It is conceivable that NSD could distribute items to
the CSFs one at a time as the CSFs  inventories are
depleted, thereby keeping each CSF from accumulating
any excess inventory. The time required for shipping
and the cost of handling these shipments render such
an approach obviously impractical. Two practical ap-
proaches are considered. A no-resupply policy (NR-
policy) and a one-stage resupply policy (R-policy) under
which NSD distributes a resupply inventory R among
the CSFs the first time one of them reaches its minimum.

Under the NR-policy, an optimal allocation for a
given order size can be computed by means of an
algorithm based only on estimated ratios of mean
demand between CSFs. These estimates can be based
on demand experienced during previous order cycles.
Tables listing these optimal allocations are easily con-
structed for a variety of demand ratios.

An advantage of the NR-policy is that it permits NSD
to process an incoming order and send shipments to the
CSFs without maintaining an inventory of its own.
However, the excess inventory at reorder time is further
reduced by the R-policy, a fact which may justify the
cost of additional shipping and handling, particularly
for high-cost items. The following example illustrates
the comparison of excess inventories between the two
policies.

Starting with an initial inventory 142 larger than the
sum of the CSF minimum levels, the NR-policy optimum
allocation based upon six CSFs with demand ratios
7:8:9:10:11:12 is 19, 21, 23, 25, 26, 28, respectively. The
resulting excess inventory averages 34.8. Using the R-
policy with R = 10, the excess inventory averages 19.5,
a reduction of 44%.
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lll. Setting Minimum Levels

If the demand distribution for a CSF is known, then
for each possible value of the minimum stockage level
s, one can compute the expected shortage (i.e., demands
not satisfied) during the lead period required for re-
supply. One also computes the average level of inventory
resulting from the choice of s. The standard inventory
model based upon known demand distribution (Ref. 2)
then proceeds by choosing s so as to minimize a per-
formance criterion of the form

cs + &(s) (1)

where
&(s) — expected shortage per lead period

and ¢ depends upon the frequency of lead periods and
the relative importance of shortages.

Of course, the true distribution of demand for an
individual CSF is not known and must be estimated.
A natural approach is first to estimate this distribution
and then, using the estimated distribution, choose the
optimal s by the standard methods. This approach is
unsatisfactory because it fails to weigh the consequences
of errors of estimation. To illustrate the nature of the
difficulty, let us suppose that the demand is subject to
a Poisson distribution with mean demand (per lead
period) M, assumed unknown. The usual estimate of
M is D/T, where D is the observed demand over a
period of time equal to T lead periods. If M = 10 and
T = 3, then the probability that the estimate D/T = M
is 0.073, and the probabilities of other values are shown
by the heights of the bars in Fig. 1. To each value of D
there corresponds a value of s = s(D/T) (chosen opti-
mally for mean demand D/T). As a consequence of using
s(D/T) rather than s(M) (the optimal s-value for the
true mean demand, M), one incurs a change in expected

shortage,
£=5(: (3)- .

and a (possible) savings in the inventory term in ex-
pression (1),
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which are plotted in Fig. 1 for ¢ = 0.02. The term regret
will be used to refer to

E-1= [cs(%) +6(s(7))] - [+ + &so0)]

which is the increase in expression (1) resulting from
using s = s(D/T) rather than the s = s(M) (recall that
since M is the actual mean demand, s = s(M) minimizes
expression (1)). The effect of errors of estimation (devia-
tions of D/T from M) are apparent from Fig. 1. While
the regret increases as D/T moves away from M in either
direction, note that the regret rises much more sharply
for D/T less than M, i.e., underestimating M is much
more costly than overestimating M. The explanation of
this profound asymmetry is that the term c*s grows
linearly with s, while &(s) is nonlinear, being very small
for s comfortably larger than M (when the probability
of incurring any shortage is small), but rising steeply
as s decreases to M and below (where the expected
shortage is roughly M — s).

Obviously, what would be desirable is a procedure
for setting s (based on D and T) that minimizes the
average regret. The problem is complicated because
the average regret of a given procedure depends on the
true M and no procedure minimizes it for all M. Appli-

cation of statistical decision theory leads to a class of
readily computable procedures which have certain opti-
mal properties. Selection of procedures within this class
is greatly facilitated by a specially developed computer
program which evaluates and plots average regret as
a function of M. One can thus select a procedure whose
performance is reasonably good for a broad range of
values of M and is particularly strong for M in a smaller
range where the mean demand is thought to lie. Pre-
liminary investigations have led to some useful formulas
for choosing s.

Several refinements of this basic approach have already
been made and incorporated into the general policy and
associated computer programs. One of these concerns
the modifications required to deal with items which are
dispensed by a CSF in different quantities, e.g., one or
two items, a dozen, or two dozen. Another concerns the
problem of sporadic demand. Any procedure for setting
s based on observed demand over time T may encounter,
particularly if T is small, the difficulty that only small-
size orders were observed during time T but large orders
may occur occasionally. This calls for a substantially
larger s to keep the expected shortage under control. A
flexible and efficient way of setting s in such cases has
been developed, and its performance studied using the
computer evaluation program referred to above.
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Fig. 1. Effect of the error in estimating demand
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